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THE COMBINATION OF TAGUCHI – ENTROPY – WASPAS - PIV METHODS 

FOR MULTI-CRITERIA DECISION MAKING WHEN EXTERNAL 

CYLINDRICAL GRINDING OF 65G STEEL 

This paper presents a study on the multi-creteria decision making in the external cylindrical grinding process 

of 65G steel. An aluminum oxide grinding wheel was used in the experimental process. The experimental 

matrix was designed according to the Taguchi method with twenty-seven experiments. Five parameters were 

used to design the experimental matrix including workpiece velocity, feed rate, depth of cut, dressing feed 

rate, and dressing depth of cut. The surface roughness and Material Removal Rate (MRR) were determined 

for each experiment. This is the first time that the Weighted Aggregates Sum Product ASsessment (WASPAS) 

and Proximity Indexed Value (PIV) methods were used to make the multi-criteria decision for grinding 

process. The weighs of ouput criteria (surface roughness and MRR) were determined by Entropy method. 

Both WASPAS and PIV methods determined an experiment that simultaneously ensured the “minimum value” 

of surface roughness and “maximum value” of MRR.  

Nomenclature 

Ra: The arithmetical mean deviation of the assessed profile 

MRR: Material removal rate 

TOPSIS: Technique for order preference by similarity to ideal solution 

VIKOR: Vlsekriterijumska optimizacija i kompromisno resenje in Serbian 

MOORA: Multi objective optimization on the basis of ratio analysis 

COPRAS: Complex proportional assessment 

RIM: Reference ideal method 

WASPAS: Weighted aggregates sum product assessment 

PIV: Proximity indexed value  

S/N: Signal-to-noise ratio 

NN: Neural network 

GA: Genetic algorithm 

RSM: Response surface methodology 

GRA: Gray relational analysis 
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1. INTRODUCTION 

 The goal of most machining methods is to be able to manufacture machine parts with 

small surface roughness and high MRR. Because the surface roughness directly affects on  

the workability of machine parts through the wear resistance, fatigue strength, and chemical 

corrosion resistance, and MRR is an important parameter to evaluate the machining 

productivity [1, 2]. 

This problem is even more significant when applying to grinding methods because 

grinding is known to be the final finishing method for surfaces with small roughness 

requirement [3]. The productivity when machining by grinding methods is limited because 

the depth of cut when grinding is often very small [4]. Machining productivity is directly 

depended on the parameters of the cutting process. But these parameters of the cutting process 

also have a direct influence on the surface roughness. In addition, surface roughness also 

depends on many other factors such as parameters of the dressing process, cooling parameters, 

machining material, conditions of experimental equipment, etc., [5]. Therefore, to ensure  

the machining process with small surface roughness and high MRR, it is required to conduct  

a case-by-case study. However, within a research process corresponding to a certain 

experimental system, it is impossible to survey all the above parameters (the parameters that 

affect on the surface roughness and MRR). Therefore, in each specific case, only a few 

parameters can be selected to survey and determine the values of these parameters to ensure 

small surface roughness and/or large MRR. Stemming from this feature, many experimental 

studies have been carried out to solve this problem. 

The Taguchi method was used to design the experimental matrix, and then the S/N 

analysis method was used in many cases to determine the values of parameters of the 

machining process to ensure the minimum surface roughness. 

When grinding the EN19 steel [6], the authors applied the Taguchi method to design  

the experimental matrix and applied S/N method to analyze the experimental results. They 

determined that to ensure the minimum value of surface roughness, the workpiece velocity, 

feed rate, and depth of cut were 410 rev/min, 0.18 mm/rev, and 0.02 mm, respectively. 

Taguchi and S/N method were also applied to optimize the grinding process of AISI 4140. 

The results showed that to obtain the minimum value of surface roughnes, the grinding wheel 

speed was 2640 rev/min, workpiece speed was 710 rev/min, grain size was 46 mesh/inch, 

depth of cut was 0.015 mm, concentration of the coolant was 5%, and number of passes was 

3 [7]. Study on determination of cutting parameters to ensure the minimum value of surface 

roughness when grinding the AISI D3 steel was also performed according to matrix using 

Taguchi method. S/N method was also applied to analyze the experimental results [8].  

The analyzed results showed that to obtain the smallest surface roughness, the grinding wheel 

speed was 2000 rev/min, workpiece speed 220 rev/min, feed rate was 3.2 mm/rev, and depth 

of cut was 0.005 mm. The grinding process of AISI 1045 was performed according to a matrix 

using Taguchi method. And then, S/N method was also applied to analyze the experimental 

results. The results showed that with the grinding wheel speed of 2100 rev/min, workpiece 

speed of 500 rev/min, grinding grain material of silicon carbide, grain size of 60, coolant 

concentration of 3%, and pass number of 4, the value of surface roughness was smallest [9]. 

When grinding the 9XC steel, to ensure the minimum of surface roughness, the coarse 
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dressing depth of 0.07 (mm), the fine dressing depth of 0.02 (mm), the number of non-feeding 
dressing times is 3 [10]. In this study, Taguchi method was also used to design the experimen-

tal matrix, and then, S/N method was also used to analyze the experimental results. For EN19 

steel, to ensure the minimum value of surface roughness, the dressing depth of cut was 0.02 

mm, dressing feed rate was 80 mm/min, drag angle was 500, and the number of passes was 4 

[11]. Taguchi and S/N methods were also used to design the experimental matrix and analyze 

the experimental results. The authors performed the grinding process of EN8 steel using four 

different grinding wheels including Al2O3 of grades K and L, and white alumina of grades  

J and K. Taguchi and S/N methods were also used to design the experimental matrix and 

analyze the experimental results. The analyzed results showed that the surface roughness was 

smallest when using the Al2O3 of grade L grinding wheel and with the grinding wheel speed 

was 1300 rev/min, workpiece speed was 278 rev/min, and depth of cut was 0.03 mm [12].  

Taguchi method was also applied to design an experimental matrix, and then the S/N 

ratio analysis method was also applied to determine the values of machining parameters to 

ensure the maximum MRR. 

When grinding the AISI 31 steel, Taguchi and S/N methods were also used to design 

the experimental matrix and analyze the experimental results. The results showed that to 

obtain the maximum value of MRR, the grinding speed, feed rate, and depth of cut were 

1000 rev/min, 0.095 mm/min, and 0.03 mm, respectively [13]. When grinding the AISI 316 

steel, to obtain maximum value of MRR, the cutting velocity was 560 m/min, feed rate was 

0.13 mm/rev, and depth of cut was 0.005 mm [14]. In this study, Taguchi and S/N methods 

were also used to design the experimental matrix and analyze the experimental results. 

Taguchi and S/N methods were also used to design the experimental matrix and analyze  

the experimental results when grinding the 9CrSi steel [15]. This study showed that to obtain 

the maximum value of MRR, the dressing feed rate was 3 m/min, coarse dressing depth was 

2 mm, coarse dressing times was 1, fine dressing depth was 1 mm, fine dressing times was 3, 

and non-feeding dressing times was 6. 

Through some of the above studies, it can be found that the Taguchi method has been 

successfully applied in many different cylindrical grinding processes. This is also easily 

explained because the Taguchi method is known as an experimental design method enabling 

the performance of few experiments with many input parameters, and the input parameters 

with many levels. Another outstanding advantage of the Taguchi method is that it allows 

designing an experimental matrix with the input parameters being qualitative ones (such as 

type of grinding wheel). This is the exclusive advantage of the the matrix design method 

according to the Taguchi method [16]. However, if only the Taguchi method is applied to 

design the experimental matrix and then the S/N ratio analysis method is applied, only  

the values of parameters of the machining process can be determined to ensure only one 

criterion, such as ensure the integer minimum surface roughness or ensure the integer 

maximum MRR. 

In order to overcome this limitation of the Taguchi method, a number of studies were 

also conducted by combining the matrix design according to the Taguchi method with  

a certain algorithm. When grinding AISI 316 steel, to simultaneously ensure the minimum 

value of surface roughness and maximum value of MRR, the workpiece velocity was 

13 m/min, feed rate was 17 mm/min, and depth of cut was 0.01 mm [17]. To determine these 
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velues of cutting parameters, the authors combine the Taguchi method and meta-heuristic 

algorithm. The Taguchi and GRA were combined when study on the grinding process of 9CrSi 

[18]. The results showed that to simultaneously ensure the minimum value of surface 

roughness and maximum value of MRR, the dressing feed rate was 1.4 mm/min, coarse 

dressing depth was 0.02 mm, coarse dressing time was 1, fine dressing depth was 0.005 mm, 

fine dressing times was 1, and non-feeding dressing was 5. The authors combined the 

Taguchi, RSM, and GA method when study on the grinding process of 6061-T4 aluminum 

alloy [19]. The results showed that to simultaneously ensure the minimum values of surface 

roughness and vibirations, the values of infeed, longitudinal feed, and work speed were 

0.04 mm/cycle, 70 mm/s, and 80 rev/min, respectively. 

In addition to combining the Taguchi method with a number of algorithms as presented 

above, to simultaneously ensure the multiple criteria of a machining process or of a certain 

operation, a concept that is known as “multi-criteria decision making – MCDM” is created.  

In order to realize multi-criteria decision making, the combination of the Taguchi method and 

mathematical methods has been carried out in many studies under many different fields. Some 

commonly used techniques, such as: TOPSIS [20], VIKOR [21], MOORA [22], COPRAS [23], 

RIM [24], WASPAS [25], PIV [26], etc. 

However, when using methods such as TOPSIS, VIKOR, MOORA, COPRAS, RIM to 

rank the alternatives, it is very easy to occur the reversal to solutions. That is, if we add or 

subtract a certain solution, the order of the previously ranked solutions will not be maintained, 

sometimes even creating an opposite ranking compared to the original ranking [26]. The PIV 

method is known as a multi-criteria decision making method which enables to minimize  

the possibility of reversibility to solutions [26]. This method has been successfully applied in 

MCDM when ranking and selecting E-learning sites [27], for the selection of materials for 

manufacturing some parts of automobiles [28], for the selection of elements for logistics 

activities of the EU countries [29], for the selection of additives in a production process [30], 

etc. The WASPAS method has also been successful in MCDM in some studies, such as: in 

recovering used mobile phones [31], in human resource management to ensure the continuous 

development and satisfaction of employees [32], in selection of materials of a production 

process [33], in multi-criteria decision making when turning aluminum [34], in development 

of Klaipeda sea port [35], etc. However, until now, there have been no studies that apply such 

two methods (WASPAS and PIV) for MCDM in external cylindrical grinding. 

It is also important to note that when MCDM, it is required to determine the weight  

of each criterion. However, if the weighting of the criteria is done according to the subjective 

opinion of the decision maker, it is a lack of necessary reliability. The weighting of each 

criterion which is done by expert opinions also depends a lot on the knowledge of the experts, 

and sometimes also greatly influenced by the design of questionnaires. Determining weights 

for criteria by Entropy method which is a well-known method, has been applied in many 

cases. However, unfortunately, to date, there have been no studies that apply the Entropy 

method to determine the weight of criteria in the external cylindrical grinding process. 

To machine parts with high requirements for hardness and wear resistance such as those 

in the cement, thermal power, and sugar industries, 65G steel is one of the first selected 

materials. When machining surfaces with requirements for high precision of these parts,  

the cylindrical grinding method is often chosen as the final machining method. Several studies 
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on grinding this steel (or equivalent steels) have been published, such as the study on changes 

in hardness after grinding [36], the study on the cutting force when grinding [37], the study 

on the effect of cutting parameters on surface roughness when face grinding [38]. However, 

a surprising thing has been discovered that up to now, there has been no published research 

on determining the value of technological parameters to simultaneously ensure the minimum 

surface roughness and the maximum MRR when circular grinding this type of steel. 

From the above analysis and comments, it is shown that: Firstly, the Taguchi method 

shows many advantages in designing an experimental matrix, but the combination of Taguchi 

method and the two methods (WASPAS and PIV) has not been implemented in any studies on 

grinding in general as well as the external cylindrical grinding method in particular; Secondly, 

the application of the Entropy method to determine the weights of criteria has not been applied 

to the external cylindrical grinding method; Thirdly, No published research has been found 

on the simultaneous survey of two parameters (surface roughness and MRR) when cylindrical 

grinding 65G steel. These gaps will be covered in this study. Specifically, the experiments  

of cylindrical grinding 65G steel will be carried out according to the designing matrix by 

Taguchi method, Entropy method will be applied to determine the weights of surface 

roughness and MRR, WASPAS and PIV methods will be applied for multi-criteria decision 

making. 

2. DETERMINATION OF THE WEIGHT USING ENTROPY METHOD 

Determining the weights of criteria using Entropy method is done according to the 

following steps [39]. 

Step 1. Determine the normalized values for criteria 
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3. MULTI-CRITERIA DECISION MAKING METHODS 

3.1. WASPAS METHOD 

The WASPAS method was first recommended in 2012 [25], the implementation steps  

of this method are as follows: 

Step 1. Establish the initial decision-making matrix (X) as shown in formula (4)  
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where: m is the number of options (S1, S2, …, Sm), n is the number of criteria (C1, C2, …, Cn). 

Step 2. Determine the normalized matrix using the following equations. 

𝑛ij =
𝑥ij

𝑚𝑎𝑥 𝑥𝑖𝑗
for 𝐶1, 𝐶2, . . . , 𝐶𝑛 ∈ 𝐵 (5) 

𝑛ij =
𝑚𝑖𝑛 𝑥ij

𝑥𝑖𝑗
for 𝐶1, 𝐶2, . . . , 𝐶𝑛 ∈ 𝐶 (6) 

Of which B represents the benefit criteria, C represents the cost criteria. 

Step 3. Develop a weight matrix by multiplying the initial matrix by the weight of the criteria, 

of which wj is the weight of the criterion j. 
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Step 4. Add up all values of the criteria in each option (sum by rows). 
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Step 5. Determine the weighted product model according to the following formulas. 
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Step 6. Determine the relative values of the options Ai according to the formulas. 

ij 1i m
A a


 =    (13) 

i (1 )i iA Q P =  + −   (14) 

Of which the coefficient  can choose one of the following values: 0; 0.1; 0.2; ...; 1.0 

Step 7. Rank the options according to the principle, the one with the maximum Ai is the best, 

whereas the worst one obtains the minimum Ai. 

3.2. PIV METHOD 

PIV is a method for multi-criteria decision making, first introduced in 2018 [26].  

The steps to implement multi-criteria decision making according to this method are as 

follows. 

Step 1. Describe solutions Si (with j = 1, 2, …, m) and criteria Ci (with j = 1, 2,…., n). 
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Step 2. Develop a decision matrix X by arranging the solutions by rows and the criteria by 

columns as shown in the formula (4). 

Step 3. Determine the normalized decision matrix using the formula (15). 

2

1

j

j
m

j

i

x
R

x
=

=



 
(15) 

Of which xi is the actual decision value of the option i. 

Step 4. Determine the weighted normalized decision matrix according to the formula (16) 

jwj jR =   (16) 

Of which wj is the weight of the criterion j. 

Step 5. Evaluate the weighted proximity index according to the formula (17). 

𝑢𝑖 = {
𝜈𝑖𝑚𝑎𝑥 for beneficial attributes

𝜈𝑖 − 𝜈𝑚𝑖𝑛 for  cos t  attributes
 (17) 

Step 6. Determine the overall proximity value according to the formula (18). 
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Step 7. Rank the solutions according to the principle that the solution with the minimum di is 

the best. 

4. GRINDING PROCESS EXPERIMENT 

The 65G steel samples used in this study have been heat treated to a hardness of 62 HRC. 

The workpiece has diameter and length of 30mm and 320mm, respectively, but only performs 

the grinding process on the 250 length of the workpiece, the rest is for mounting parts 

(position for clamping buckles). 

  

Fig. 1. Cylindrical grinder 
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The experiments were carried out on a traditional external cylindrical grinding machine 

(GU32x100S of Palmary Brand, Taiwan) as described in Fig. 1. The grinding wheel that was 

produced by Vietnam's Hai Duong grinding wheel company was used in this study. This 

grinding wheel is aluminum oxide wheel (Cn), grain size 80, ceramic binder (G), average 

hardness of 1 (TB1), cylindrical wheel type (V), the maximum allowable velocity reco-

mmended by the wheel manufacturer of 35 m/s. The full symbol of the grinding wheel is 

Cn80.TB1.G.V.35m/s. The external diameter, thickness and internal diameter of grinding 

wheels are 280 mm, 40 mm and 115 mm, respectively. Dressing by a multi-point diamond 

dresser with the symbol 3908-0088C (Russian Federation). 

The experimental matrix was designed according to the Taguchi method with a total 

twenty-seven experiments. Parameters including workpiece speed, feed rate, depth of cut, 

dressing feed rate, and dressing depth were selected as the input ones. The reason these 

parameters are selected is because the adjustment to such parameters' values is done more 

quickly by the machine operator than the adjustment to other parameters (type of grinding 

wheels, type of coolants, parameters of the grinding machine, etc). Each input parameter has 

selected three levels of values as shown in Table 1, the experimental matrix is presented  

in Table 2. 

Table 1. Value of input parameters at levels 

Parameter Symbol Unit 
Value at level 

1 2 3 
Workpiece speed n rev/min 400 600 800 
Feed rate fw mm/rev 0.05 0.075 0.09 
Depth of cut ar mm 0.01 0.015 0.02 
Dressing feed rate fd mm/min 100 150 200 
Dressing depth ad mm 0.005 0.01 0.015 

Table 2. Experimental matrix and responses 

Trial 

Code value of input 

parameters 
Actual value of input parameters Responses 

n fw ar fd ad 
n 

(rev/min) 
fw 

(mm/rev) 
ar 

(mm) 
fd 

(mm/min) 
ad 

(mm) 
Ra 

(m) 
MRR 

(mm3/min) 
1 1 1 1 1 1 400 0.05 0.01 100 0.005 0.295 18.843 
2 1 1 1 1 2 400 0.05 0.01 100 0.01 0.332 18.843 
3 1 1 1 1 3 400 0.05 0.01 100 0.015 0.370 18.843 
4 1 2 2 2 1 400 0.075 0.015 150 0.005 0.399 42.39 
5 1 2 2 2 2 400 0.075 0.015 150 0.01 0.436 42.39 
6 1 2 2 2 3 400 0.075 0.015 150 0.015 0.474 42.39 
7 1 3 3 3 1 400 0.09 0.02 200 0.005 0.489 67.813 
8 1 3 3 3 2 400 0.09 0.02 200 0.01 0.527 67.813 
9 1 3 3 3 3 400 0.09 0.02 200 0.015 0.564 67.813 

10 2 1 2 3 1 600 0.05 0.015 200 0.005 0.425 42.39 
11 2 1 2 3 2 600 0.05 0.015 200 0.01 0.460 42.39 
12 2 1 2 3 3 600 0.05 0.015 200 0.015 0.495 42.39 
13 2 2 3 1 1 600 0.075 0.02 100 0.005 0.312 84.766 
14 2 2 3 1 2 600 0.075 0.02 100 0.01 0.347 84.766 
15 2 2 3 1 3 600 0.075 0.02 100 0.015 0.382 84.766 
16 2 3 1 2 1 600 0.09 0.01 150 0.005 0.408 50.877 
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17 2 3 1 2 2 600 0.09 0.01 150 0.01 0.443 50.877 
18 2 3 1 2 3 600 0.09 0.01 150 0.015 0.478 50.877 
19 3 1 3 2 1 800 0.05 0.02 150 0.005 0.417 75.348 
20 3 1 3 2 2 800 0.05 0.02 150 0.01 0.457 75.348 
21 3 1 3 2 3 800 0.05 0.02 150 0.015 0.497 75.348 
22 3 2 1 3 1 800 0.075 0.01 200 0.005 0.542 56.53 
23 3 2 1 3 2 800 0.075 0.01 200 0.01 0.582 56.53 
24 3 2 1 3 3 800 0.075 0.01 200 0.015 0.622 56.53 
25 3 3 2 1 1 800 0.09 0.015 100 0.005 0.398 101.737 
26 3 3 2 1 2 800 0.09 0.015 100 0.01 0.438 101.737 
27 3 3 2 1 3 800 0.09 0.015 100 0.015 0.478 101.737 

Each experimental sample was measured for its surface roughness (Ra) using a SJ-201 

meter of Mitutoyo (Japan). The standard length of the measurement has been set to 0.8 mm. 

Each experimental sample is measured at least three times, the measurement direction is 

parallel to the sample centerline (perpendicular to the cutting velocity vector). Surface 

roughness at each experiment was calculated as the average of successive measurements. 

MRR is calculated as the amount of material takeoff in one minute. This quantity is 

calculated by subtracting the volume of the workpiece after grinding from the volume of the 

workpiece before grinding and then dividing it by the grinding time, of which the grinding 

time is calculated by the grinding length divided by the displacement velocity of the grinding 

wheel head (the feed rate). 

The experiments were carried out under the following conditions: the speed of grinding 

wheel spindle 1750 rev/min; using N-600 industrial oil (made in Vietnam) with a concentra-

tion of 12%, flow rate 16 liters/min. These values have been selected according to the recom-

menddations of the coolant factory and the grinding wheel manufacturer. 

5. RESULTS AND DISCUSSION 

5.1. ANALYZING THE EXPERIMENTAL RESULTS 

With the selected significance level of 0.05 [40], to investigate the influence of the input 

parameters on the surface roughness, the analysis of variance (ANOVA) was performed,  

the analyzed results are presented in Table 3. From the data in Table 3 showed that the proba-

bility P-value of the workpiece speed, dressing feed rate, and dressing depth of cut are all 

much smaller than the significance level. Thus, we conclude that these four parameters all 

significantly affect on the surface roughness. The dressing feed rate and dressing depth of cut 

are two parameters that have a great influence on the topography of the grinding wheel, 

thereby greatly influencing on the shape, size, and number of scratches of the grinding grains 

left on the workpiec surface, so they greatly affect on the surface roughness [41]. The change 

of the workpiece speed and the feed rate will change the contact time between the grinding 

wheel surface and the workpiece surface, thereby also changing the number of grinding grain 

scratches left on the workpiece surface as well as the changing the amount of heat transferred 

to the workpiece surface, thereby changing the surface roughness [42]. 
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Table 3. The ANOVA results 

Factors Coefficients 
Standard 

Error 
t Stat P-value 

Lower 

95% 
Upper 

95% 
Lower 

95.0% 
Upper 

95.0% 
Intercept –0.0275 0.0386 –0.7118 0.4844 –0.1077 0.0528 –0.1077 0.0528 
n 0.0002 0.0000 5.2199 0.0000 0.0001 0.0002 0.0001 0.0002 
fw 1.3426 0.2870 4.6774 0.0001 0.7457 1.9396 0.7457 1.9396 
ar –0.8889 1.1601 –0.7662 0.4521 –3.3014 1.5237 –3.3014 1.5237 
fd 0.0015 0.0001 12.9683 0.0000 0.0013 0.0017 0.0013 0.0017 
ad 7.5000 1.1601 6.4650 0.0000 5.0875 9.9125 5.0875 9.9125 

The probability P-value of the depth of cut equals to 0.4521, this value is much larger 

than the significance level, so this parameter does not significantly affect on the surface 

roughness. When using aluminum oxide grinding wheel, cutting heat is transferred to  

the workpiece surface a large amount (about 60 to 90% of the total heat that is generated 

during grinding). This amount of heat can cause the metal layer at the machined surface to 

reach a molten state [43]. And so, the change in the depth of cut may having a negligible 

influence on the tangential cutting force component with the machining surface. Therefore, 

depth of cut has no significant effect on the surface roughness. 

The data in Table 3 also showed that when increasing the value of the workpiece speed, 

feed rate, dressing feed rate, and dressing depth of cut, the surface roughness will increase 

(because the coefficients correspond to these parameters are the positive values). In contrast, 

when increasing the depth of cut, the surface roughness decreases (because the coefficient 

corresponding to this parameter is negative value). From there, it is shown that, in order to 

reduce surface roughness, it is necessary to reduce the workpiece speed, feed rate, dressing 

feed rate, and dressing depth of cut, and to increase the cutting depth. However, it is also easy 

to see that reducing the cutting speed and feed rate causes the MRR to decrease. From that, it 

can be seen that it is difficult to determine the value of the input parameters to simultaneously 

ensure the minimum value of surface roughness and the maximum value of MRR. 

On the other hand, observing the data in Table 2 shows that: the experiment No. 1 has 

the minimum surface roughness, but also in this experiment, the MRR is also the minimum; 

Experiments No. 25, No. 26 and No. 27 have the maximum MRR, but also in such three 

experiments, the surface roughness is not the minimum. From there, it can be seen that if we 

only observe the data in Table 2, we will also fail in selecting the experiment (out of a total 

of twenty-seven experiments) to simultaneously ensure the minimum surface roughness and 

the maximum MRR. The fact also confirms that there is no experiment out of the total 

of twenty-seven experiments in Table 2 that guarantees absolute minimum surface roughness 

and absolute maximum MRR. Therefore, we can only determine the experiment where  

the surface roughness is considered to be the “minimum” and the MRR is considered  

the “maximum”. And of course, to do this, it is required to perform MCDM when considering 

the weight of each criterion.  

5.2. MULTI-CRITERIA DECISION MAKING USING THE WASPAS METHOD 

Applying the formulas (1), (2) and (3) to determine the weighs for the criteria as follows: 

wRa = 0.1598; wMRR = 0.8402. 
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Applying the formula (4) to form the initial decision making matrix (X). This matrix is 

the last two columns in Table 2. Applying formulas (5), (6) to calculate ni value. Applying 

formulas (7), (8) to calculate vi value. The results are presented in Table 4. 
 

Table 4. Values of ni and vi in WASPAS 

Solutions 
ni vi 

Ra MRR Ra MRR 

S1 1.0000 0.1852 0.1598 0.1556 
S2 0.8886 0.1852 0.1420 0.1556 
S3 0.7973 0.1852 0.1274 0.1556 
S4 0.7393 0.4167 0.1181 0.3501 
S5 0.6766 0.4167 0.1081 0.3501 
S6 0.6224 0.4167 0.0995 0.3501 
S7 0.6033 0.6666 0.0964 0.5600 
S8 0.5598 0.6666 0.0895 0.5600 
S9 0.5230 0.6666 0.0836 0.5600 
S10 0.6941 0.4167 0.1109 0.3501 
S11 0.6413 0.4167 0.1025 0.3501 
S12 0.5960 0.4167 0.0952 0.3501 
S13 0.9455 0.8332 0.1511 0.7000 
S14 0.8501 0.8332 0.1359 0.7000 
S15 0.7723 0.8332 0.1234 0.7000 
S16 0.7230 0.5001 0.1155 0.4202 
S17 0.6659 0.5001 0.1064 0.4202 
S18 0.6172 0.5001 0.0986 0.4202 
S19 0.7074 0.7406 0.1130 0.6223 
S20 0.6455 0.7406 0.1032 0.6223 
S21 0.5936 0.7406 0.0949 0.6223 
S22 0.5443 0.5556 0.0870 0.4669 
S23 0.5069 0.5556 0.0810 0.4669 
S24 0.4743 0.5556 0.0758 0.4669 
S25 0.7412 1.0000 0.1184 0.8402 
S26 0.6735 1.0000 0.1076 0.8402 
S27 0.6172 1.0000 0.0986 0.8402 

Applying formulas (9), (10) we can obtain the value of Qi. Applying formulas (11), (12) 

we can obtain the value of Pi. Applying formulas (13), (14) we can obtain the value of Ai. 

These values were included in Table 5. The ranking of options according to the values of Ai 

were performed and included in Table 5.  

Table 5. Several parameters in WASPAS 

Solutions Qi Pi Ai Rank 

S1 0.3154 0.1577 0.2366 25 

S2 0.2976 0.1486 0.2231 26 

S3 0.2830 0.1408 0.2119 27 

S4 0.4682 0.2034 0.3358 19 

S5 0.4582 0.1946 0.3264 21 

S6 0.4495 0.1866 0.3181 23 

S7 0.6564 0.2324 0.4444 10 

S8 0.6495 0.2238 0.4367 11 
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S9 0.6436 0.2164 0.4300 12 

S10 0.4610 0.1971 0.3290 20 

S11 0.4526 0.1894 0.3210 22 

S12 0.4453 0.1826 0.3140 24 

S13 0.8511 0.3252 0.5882 4 

S14 0.8359 0.3084 0.5721 5 

S15 0.8234 0.2939 0.5587 6 

S16 0.5357 0.2203 0.3780 13 

S17 0.5266 0.2115 0.3690 16 

S18 0.5188 0.2036 0.3612 18 

S19 0.7353 0.2652 0.5003 7 

S20 0.7254 0.2534 0.4894 8 

S21 0.7171 0.2429 0.4800 9 

S22 0.5538 0.2015 0.3777 14 

S23 0.5479 0.1945 0.3712 15 

S24 0.5426 0.1881 0.3654 17 

S25 0.9586 0.3155 0.6371 1 

S26 0.9478 0.3007 0.6243 2 

S27 0.9388 0.2879 0.6133 3 

5.3. MULTI-CRITERIA DECISION MAKING USING THE PIV METHOD 

The main decision making matrix is the matrix produced by the last two columns  

of Table 2. Applying the formula (15) to calculate Ri values, apply the formula (16) to 

calculate vi values, as shown in Table 6. 

Table 6. Value of Ri and vi in PIV 

Solutions 
Ri vi 

Ra MRR Ra MRR 

S1 0.0369 1.0580 0.0059 0.8889 
S2 0.0467 1.0580 0.0075 0.8889 
S3 0.0580 1.0580 0.0093 0.8889 
S4 0.0675 5.3542 0.0108 4.4986 
S5 0.0806 5.3542 0.0129 4.4986 
S6 0.0953 5.3542 0.0152 4.4986 
S7 0.1014 13.7022 0.0162 11.5126 
S8 0.1178 13.7022 0.0188 11.5126 
S9 0.1349 13.7022 0.0216 11.5126 
S10 0.0766 5.3542 0.0122 4.4986 
S11 0.0897 5.3542 0.0143 4.4986 
S12 0.1039 5.3542 0.0166 4.4986 
S13 0.0413 21.4096 0.0066 17.9884 
S14 0.0511 21.4096 0.0082 17.9884 
S15 0.0619 21.4096 0.0099 17.9884 
S16 0.0706 7.7127 0.0113 6.4802 
S17 0.0832 7.7127 0.0133 6.4802 
S18 0.0969 7.7127 0.0155 6.4802 
S19 0.0737 16.9165 0.0118 14.2132 
S20 0.0885 16.9165 0.0141 14.2132 
S21 0.1047 16.9165 0.0167 14.2132 
S22 0.1245 9.5219 0.0199 8.0003 
S23 0.1436 9.5219 0.0229 8.0003 
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S24 0.1640 9.5219 0.0262 8.0003 
S25 0.0672 30.8407 0.0107 25.9123 
S26 0.0813 30.8407 0.0130 25.9123 
S27 0.0969 30.8407 0.0155 25.9123 

 

Applying the formula (17) to evaluate the weighted proximity index ui, applying  

the formula (18) to calculate di. The ranking of options based on the value of di were 

implemented. The results are as shown in Table 7. 

Table 7. Several parameters in PIV 

Solutions 
ui 

di Rank 
Ra MRR 

S1 0.0000 25.0234 25.0234 25 
S2 0.0016 25.0234 25.0250 26 
S3 0.0034 25.0234 25.0268 27 
S4 0.0049 21.4138 21.4186 19 
S5 0.0070 21.4138 21.4207 21 
S6 0.0093 21.4138 21.4231 23 
S7 0.0103 14.3997 14.4100 10 
S8 0.0129 14.3997 14.4126 11 
S9 0.0157 14.3997 14.4154 12 
S10 0.0063 21.4138 21.4201 20 
S11 0.0084 21.4138 21.4222 22 
S12 0.0107 21.4138 21.4245 24 
S13 0.0007 7.9240 7.9247 4 
S14 0.0023 7.9240 7.9262 5 
S15 0.0040 7.9240 7.9279 6 
S16 0.0054 19.4321 19.4375 16 
S17 0.0074 19.4321 19.4395 17 
S18 0.0096 19.4321 19.4417 18 
S19 0.0059 11.6991 11.7050 7 
S20 0.0083 11.6991 11.7074 8 
S21 0.0108 11.6991 11.7100 9 
S22 0.0140 17.9120 17.9260 13 
S23 0.0171 17.9120 17.9291 14 
S24 0.0203 17.9120 17.9323 15 
S25 0.0048 0.0000 0.0048 1 
S26 0.0071 0.0000 0.0071 2 
S27 0.0096 0.0000 0.0096 3 

After ranking the options according to the WASPAS and PIV methods as above, we find 

that two multi-criteria decision-making methods provide same results in twenty-two out  

of twenty-seven implemented options. Importantly, both methods indicate that the best option 

is the option S25, and the worst one is the option S3. In addition, the almost best options (rank: 

2, 3, 4, ...) when ranked by the two methods also coincide; the almost worst options (rank: 25, 

26) when ranked by the two methods also coincide. This affirms that the combination of the 

Entropy method with WASPAS and PIV methods has succeeded in MCDM in this study. Using 

the Entropy method to determine the weights for the criteria has helped the application  

of different MCDM methods all to indicate the best solution. This was also recommended in  

a recent study by the authors of this study [44]. 
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The differences in the ranking order of options (S16, S17, S22, S23, S24) have not been 

explained by the author of this paper at the present time. The most desired result of this study 

was achieved that both WASPAS and PIV methods show that for minimum surface roughness 

and maximum MRR, the values of workpiece speed, feed rate, depth of cut, dressing feed rate 

and dressing depth are 800 rev/min, 0.09 mm/rev, 0.015 mm, 100 mm/min and 0.05 mm, 

respectively. 

6. CONCLUSION 

In this paper, the experimental process of cylindrical grinding 65G steel using aluminum 

oxide grinding wheel was presented. The Taguchi method was applied to design the experi-

mental matrix with a total of twenty-seven experiments. Workpiece speed, feed rate, depth  

of cut, dressing feed rate, and dressing depth were variables in each experiment. Surface 

roughness and MRR were selected as output parameters. The Entropy method was applied to 

determine the weight for each criterion. The WASPAS and PIV methods were applied for 

MCDM. Some conclusions are drawn as follows: 

- With five surveyed parameters, dressing feed rate, dressing depth, workpiece speed, and 

feed rate has the greatest influence on the surface roughness. Meanwhile, the depth  

of cut has no significant influence on surface roughness. 

- This is the first time that the Taguchi, Entropy, WASPAS, and PIV methods were 

combined to make the multi-criteria decision for grinding process. Both WASPAS and 

PIV method all determined same best solution. 

- When making multi-criteria decisions by different methods, the Entropy method should 

be used to determine the weights for the criteria. 

- The ranking order of options according to the WASPAS and PIV methods coincides with 

22/27 options, equivalent to 81.5%. 

- To ensure the minimum surface roughness and the maximum MRR simultaneously,  

the value of the workpiece speed, feed rate, depth of cut, dressing feed rate and dressing 

depth are 800 rev/min, 0.09 mm /rev, 0.015 mm, 100 mm/rev and 0.005 mm, respecti-

vely. 

- In the futher work is the application of Taguchi, Entropy, WASPAS, and PIV methods to 

make multi-criteria decision of grinding process considering many criteria such as 

surface roughness, MRR, roundness deviation, dimensional accuracy, etc. 
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